SESSION DE 1988

COMPOSITION D'ANALYSE

Durée: 6 heures

Calculatrice électronique de poche — y compris calculatrice programmable et alphanumérique — à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire nº 86-228 du 28 juillet 1986.

Il sera tenu compte du soin apporté à la rédaction et de la clarté des solutions.

PRÉAMBULE

Le but du problème est l'étude du comportement asymptotique de certaines solutions d'équations différentielles linéaires.

Dans tout le problème on fixe un réel $x_0 > 0$ et les applications étudiées sont définies sur $[x_0, +\infty]$ et à valeurs dans \mathbb{C} .

Soit k un entier naturel; on rappelle qu'une application est de classe \mathscr{C}^k lorsqu'elle est k fois dérivable et que sa dérivée k-ième est continue.

On note $\mathscr C$ l'ensemble des applications continues de $[x_0, +\infty[$ dans $\mathbb C$ et on note $\mathscr B$ l'ensemble des applications continues et bornées de $[x_0, +\infty[$ dans $\mathbb C$.

Soit f un élément de \mathscr{C} . On dit que f admet un développement asymptotique (en abrégé DAS) en $+\infty$ lorsqu'il existe une suite de complexes $(a_n)_{n\in\mathbb{N}}$ telle que, quand x tend vers $+\infty$, on a pour tout naturel n:

$$f(x) = a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n} + o\left(\frac{1}{x^n}\right)$$

c'est-à-dire que:

$$\lim_{x\to +\infty} x^n \left(f(x) - a_0 - \frac{a_1}{x} - \dots - \frac{a_n}{x^n} \right) = 0.$$

(On rappelle que la notation o(h(x)) signifie : une fonction de x, g(x), telle que pour tout $\varepsilon > 0$, il existe $x_1 > x_0$ tel que pour tout $x > x_1$ on a :

$$|g(x)| \leq \varepsilon |h(x)|.$$

On note alors cette propriété $f(x) \approx \sum_{n=0}^{\infty} a_n x^{-n}$, ou

$$f(x) = a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n} + \dots,$$

même si la série $a_n x^{-n}$ est divergente.

Comme on n'étudie ici que les développements asymptotiques en $+\infty$, on parlera de « DAS » en sous-entendant « en $+\infty$ ».

On note \mathcal{A} l'ensemble des fonctions continues sur $[x_0, +\infty[$ admettant un DAS.

I. OPÉRATIONS SUR LES DAS

Toutes les applications considérées sont ici éléments de &.

- 1. Montrer que $\mathscr{A} \subset \mathscr{B}$ et $\mathscr{A} \neq \mathscr{B}$.
- 2. Soit f un élément de \mathscr{A} . Montrer l'unicité des a_n tels que $f(x) \approx \sum_{n=0}^{\infty} a_n x^{-n}$.
- 3. Donner un exemple d'application f qui ne s'annule pas sur $[x_0, +\infty[$ et qui admet le DAS à coefficients tous nuls.
- 4. Que dire du DAS de f lorsque $t \mapsto f\left(\frac{1}{t}\right)$ se prolonge sur $\left[0, \frac{1}{x_0}\right]$ en une fonction $\mathscr{C} = ?$

analyse

- 5. Soient f et g dans \mathcal{A} . Étudier l'existence des DAS de f + g, fg, $\frac{1}{f}$.
- 6. Soit fune application de classe \mathscr{C}^1 de $[x_0, +\infty]$ dans $\mathbb C$ telle que f' est dans $\mathscr A$:

$$f'(x) = \sum_{n=0}^{\infty} c_n x^{-n}.$$

À quelle condition sur les c_n l'application f admet-elle un DAS? Quels en sont les coefficients?

II. ÉTUDE DE CERTAINES FONCTIONS DÉFINIES PAR DES INTÉGRALES

On note Ω l'ensemble des (α, β) de \mathbb{C}^2 tels que $(\text{Re } \alpha > 0)$ ou bien :

(Re
$$\alpha = 0$$
, $\alpha \neq 0$ et Re $\beta > 0$).

Soit (α, β) un élément de Ω . On note a (resp. b) la partie réelle de α (resp. β). On pose :

$$\psi_{\beta}(x) = e^{\alpha x} \dot{x}^{\beta}, \qquad J_{\beta}(x) = \int_{x_{0}}^{x} \psi_{\beta}(t) dt$$

. et

$$Q_{\beta}(x) = \frac{J_{\beta}(x)}{\psi_{\beta}(x)} = \int_{x_{0}}^{x} e^{\alpha(t-x)} \left(\frac{t}{x}\right)^{\beta} dt.$$

- 1. Trouver une relation entre $J_{\beta}(x)$, $J_{\beta-1}(x)$, $\psi_{\beta}(x)$, $\psi_{\beta}(x_0)$. On suppose dans 2. et 3. que $a = \text{Re } \alpha > 0$.
- 2. Montrer que:

$$J_{\beta}(x) = \frac{1}{\alpha} \psi_{\beta}(x)$$
. (On pourra d'abord traiter le cas où α et β sont réels.)

3. Toujours avec l'hypothèse $a = \text{Re } \alpha > 0$, montrer que Q_{β} est dans $\mathscr A$ et que :

$$Q_{\beta}(x) \approx \frac{1}{\alpha} + \sum_{n=1}^{\infty} (-1)^n \frac{\beta(\beta-1) - (\beta-n+1)}{\alpha^{n+1} x^n}$$

4. Montrer que dans le cas où Re $\alpha = 0$ (donc $\alpha \neq 0$, Re $\beta > 0$), on a: $\lim_{x \to +\infty} Q_{\beta}(x) = \frac{1}{\alpha}$.

Soit à nouveau (α, β) un élément quelconque de Ω ; on pose : $\varphi_{\beta}(x) = \frac{1}{\psi_{\alpha}(x)} = e^{-\alpha x} x^{-\beta}$.

5. Montrer la convergence de l'intégrale $\int_{x}^{+\infty} \varphi_{\beta}(t) dt$, et, notant $I_{\beta}(x)$ la valeur de cette intégrale, trouver une relation entre $I_{\beta}(x)$, $I_{\beta+1}(x)$ et $\varphi_{\beta}(x)$.

On pose:

$$P_{\beta}(x) = \frac{I_{\beta}(x)}{\varphi_{\beta}(x)} = \int_{x}^{+\infty} e^{-\alpha(t-x)} \left(\frac{t}{x}\right)^{-\beta} dt.$$

6. On suppose ici $a = \text{Re } \alpha > 0$. Montrer que :

$$\lim_{x\to a} P_{\beta}(x) = \frac{1}{\alpha},$$

puis montrer que l'application P, est dans se et expliciter son DAS.

7. Retrouver les résultats du 6. en supposant Re $\alpha = 0$ (et donc $\alpha \neq 0$ et $b = \text{Re } \beta > 0$).

eee analyse

III. Une équation intégrale

On note Δ l'ensemble des (x, t) de \mathbb{R}^2 tels que $x_0 \le x \le t$. Soit K une application continue bornée de Δ dans C; on pose:

$$A = \sup \{ |K(x, t)| / (x, t) \in \Delta \}.$$

Pour tout g de \mathcal{B} on pose :

$$||g|| = \sup\{|g(t)|/t \ge x_0\}.$$

1. Soit h un élément de \mathcal{B} ; montrer que l'intégrale $\int_{x}^{+\infty} \frac{K(x, t) h(t)}{t^{2}} dt$ est convergente.

On note (Th) (x) la valeur de cette intégrale.

- 2. Montrer que pour tout h de \mathcal{B} , Th est un élément de \mathcal{B} et que $|(Th)(x)| \le A \frac{\|h\|}{x}$ pour tout $x \ge x_0$.
- 3. Montrer que $T: h \mapsto Th$ est linéaire continue de \mathscr{B} dans \mathscr{B} .

 On rappelle que T^0 est l'application identique I.
- 4. Montrer la convergence normale de la série de fonctions $(T^n h)_{n\in\mathbb{N}}$ sur $[x_0, +\infty]$.
- 5. Montrer que $\sum_{n=0}^{\infty} T^n h$ est l'unique élément g de \mathscr{B} tel que g Tg = h.

IV. DAS DE LA SOLUTION D'UN PROBLÈME DU TYPE PRÉCÉDENT

On fixe ici un élément (α, β) de Ω . On pose, pour tout (x, u) de Δ ,

$$L(x, u) = \int_{x}^{u} e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{2\beta} dt.$$

- 1. Montrer que L est continue sur Δ .
- 2. Montrer que $(t, u) \mapsto e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{2\beta}$ est bornée sur Δ .
- 3. Montrer que L est bornée sur Δ . (On pourra introduire

$$L_0(u) = \int_{x_0}^u e^{2\alpha(t-u)} \left(\frac{t}{u}\right)^{2\beta} dt = L(x_0, u) \quad \text{et exprimer L à l'aide de la fonction } L_0.$$

- 4. Soit *n* un naturel quelconque. Montrer que $x \mapsto \int_{x}^{+\infty} \frac{L(x, u)}{u^{n+2}} du$ admet un DAS. (Même indication que dans 3.)
- 5. Soit ρ une application continue de $[x_0, +\infty[$ dans $\mathbb C$ admettant un développement limité à l'ordre n en $+\infty$.

Montrer que $x \mapsto \int_{x}^{+\infty} \frac{L(x, u) \rho(u)}{u^2} du$ admet un développement limité à l'ordre n+1 en $+\infty$.

Soit F un élément de A. Soit λ un complexe quelconque.

6. Montrer qu'il existe une et une seule application g, élément de \mathcal{B} , telle que, pour tout $x \ge x_0$,

$$g(x) = \lambda - \int_{x}^{+\infty} \frac{F(u) L(x, u)}{u^2} g(u) du, \quad \text{et que } g \text{ admet un DAS.}$$

7. Montrer que g est de classe \mathscr{C}^1 sur $[x_0, +\infty[$ et que : $g'(x) = \int_x^{+\infty} e^{2\alpha(x-u)} \left(\frac{x}{u}\right)^{2\beta} \frac{F(u)g(u)}{u^2} du$.

8. Montrer que g' admet un DAS.

V. Solutions normales de y'' + qy = 0

Soit q un élément de \mathscr{A} , $q(x) \approx \sum_{n=0}^{\infty} a_n x^{-n}$; on suppose $a_0 \neq 0$.

Soit (8) l'équation différentielle y'' + qy = 0.

On dit que la solution f de (\mathscr{E}) est normale lorsqu'il existe (α, β) dans \mathbb{C}^2 et g dans \mathscr{A} tels que g' est dans \mathscr{A} , $\lim_{n \to \infty} g \neq 0$, et pour tout $x \geq x_0$:

$$f(x) = e^{-\alpha x} x^{-\beta} g(x).$$

On dit que le couple (α, β) est normal lorsqu'il existe au moins une solution normale f de (\mathcal{E}) qui lui est ainsi associée.

On pose
$$g(x) \approx \sum_{n=0}^{\infty} c_n x^{-n}$$
, avec $c_0 \neq 0$.

1. Déterminer l'équation différentielle $(\mathscr{E}_{\alpha,\beta})$ transformée de (\mathscr{E}) par le changement de fonction inconnue : $v = e^{-\alpha x} x^{-\beta} z$.

On suppose maintenant que (α, β) est un couple normal et que f est une solution normale de (\mathscr{E}) associée. On utilise les notations du préambule de cette partie.

- 2. Montrer que g' est dans s.
- 3. Montrer que (α, β) vérifie (S) $\begin{cases} \alpha^2 = -a_0, \\ 2\alpha\beta = -a_1, \end{cases}$ les coefficients c_n du DAS de g étant alors définis par une relation de récurrence à préciser. Que peut-on dire de l'ensemble des suites (c_n) vérifiant cette relation?
- 4. Montrer qu'il existe exactement deux couples (α, β) vérifiant (S) et discuter leur appartenance à Ω .

VI. Développement des solutions de (6)

On suppose désormais l'application q telle qu'il existe un et un seul élément de Ω qui soit solution de (S), et on note (α, β) cet élément.

1. Montrer que (& peut s'écrire:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\varphi\left(x\right)\frac{\mathrm{d}z}{\mathrm{d}x}\right) + \frac{\varphi\left(x\right)}{x^{2}}F\left(x\right)z = 0,$$

où φ est l'application $x \mapsto e^{-2\alpha x} x^{-2\beta}$, et F est un élément de $\mathscr A$ à préciser.

On note encore L la fonction définie en IV. Soit g une solution bornée de $(\mathscr{E}_{a,b})$. Soit (x, X) un élément de Δ .

2. Montrer que:

a.
$$\varphi(X) g'(X) - \varphi(x) g'(x) = -\int_{-\pi}^{X} \frac{\varphi(t) F(t) g(t)}{t^2} dt;$$

b. $\varphi g'$ a une limite l en $+\infty$;

c. g' tend vers 0 en $+\infty$

on pourra d'abord montrer qu'il existe M tel que :
$$\left| g'(x) - \frac{l}{\varphi(x)} \right| \le \frac{M}{x}$$
;

$$d. \quad g'(x) = \int_{x}^{+\infty} \frac{F(t) g(t)}{t^2} e^{2\alpha(x-t)} \left(\frac{x}{t}\right)^{2\beta} dt.$$

page 10 AGREGATION de MATHEMATIQUES analyse

3. Montrer que:

a.
$$g(X) - g(x) = g'(X) L(x, X) + \int_{x}^{x} \frac{L(x, t) F(t) g(t)}{t^{2}} dt;$$

b. g a une limite λ en $+\infty$, et:

$$g(x) = \lambda - \int_{x}^{+\infty} \frac{L(x, t) F(t) g(t)}{t^{2}} dt.$$

- 4. Montrer que (8) admet une et une seule solution normale bornée f, à un facteur multiplicatif près.
- 5. Montrer que toute solution de (8) non du type précédent et non nulle est normale non bornée. [On pourra dans (8) effectuer le changement de fonction y = fw où f est normale bornée non nulle.]

VII. UN EXEMPLE

Soit m un réel strictement supérieur à -2; soit λ un complexe de partie réelle strictement positive. Soit (\mathscr{E}_0) l'équation différentielle $y^* - \lambda^2 x^m y = 0$.

1. On effectue le changement de variable :

$$t = \int_0^x u^{\frac{m}{2}} du$$

et le changement de fonction inconnue $y = x^{-\frac{m}{4}}z$.

Montrer que (\mathscr{E}_0) se transforme en : (\mathscr{E}_1) $\frac{d^2z}{dt^2} + \left(\frac{k}{t^2} - \lambda^2\right)z = 0$,

où la constante k est à préciser.

- 2. Indiquer les coefficients des DAS intervenant dans les solutions de (61).
- 3. Traiter complètement l'exemple y'' xy = 0.

On obtient donc des fonctions:

į

$$f(x) = ce^{-\alpha x} x^{-\beta} g(x)$$
 avec $g(x) \approx \sum_{n=0}^{\infty} c_n x^{-n}$.

Étudier pour chacune la convergence de la série entière de terme général $c_n t^n$.