Les parties I, II et III sont indépendantes.

NOTATIONS. Pour une suite réelle $(u_k)_{k\geqslant 1}$ la notation $\sup_{k\geqslant 1}u_k$ désigne $+\infty$ si la suite

 (u_k) n'est pas majorée et la borne supérieure de $\{u_k; k \geqslant 1\}$ si cette suite est majorée.

Pour deux entiers naturels $p \leq q$, on note [p,q] l'ensemble des entiers supérieurs ou égaux à p et inférieurs ou égaux à q.

On note $\mathbb N$ l'ensemble des entiers naturels, $\mathbb N^*$ l'ensemble des entiers naturels non nuls, $\mathbb R$ l'ensemble des nombres réels.

PARTIE I : Théorèmes de Baire et de Banach-Steinhaus.

Soit $(E, \|\cdot\|)$ un espace vectoriel sur \mathbb{R} normé complet. On notera B(x, r) [resp. $\overline{B}(x, r)$] la boule ouverte [resp. fermée] de centre x et de rayon r > 0.

On considère une suite $(O_n)_{n\geqslant 1}$ d'ouverts de E telle que, pour tout $n\geqslant 1$, l'adhérence \overline{O}_n de O_n est égale à E (ainsi O_n est dense dans E).

1.a) Soit G un ouvert non vide de E. Montrer que l'on peut trouver une suite décroissante de boules $(B(x_n, \varepsilon_n))_{n \ge 1}$, c'est à dire

$$B(x_1, \varepsilon_1) \supset B(x_2, \varepsilon_2) \supset \cdots \supset B(x_n, \varepsilon_n) \supset \cdots$$

avec, pour tout $n \ge 1$,

$$0 < \varepsilon_n < \frac{1}{n}$$
 et $\overline{B}(x_n, \varepsilon_n) \subset G \cap \bigcap_{i=1}^n O_i$.

- **1.b)** Montrer que la suite $(x_n)_{n\geqslant 1}$ est de Cauchy.
- 1.c) Montrer que

$$G \cap \bigcap_{i=1}^{+\infty} O_i \neq \emptyset.$$

1.d) Conclure que

$$\bigcap_{i=1}^{+\infty} O_i = E.$$

2) On considère une suite $(L_k)_{k\geqslant 1}$ de formes linéaires continues sur E. On note |||L||| la norme d'une forme linéaire continue L, c'est-à-dire

$$|||L||| = \sup_{\|x\| \le 1} |L(x)|.$$

Pour tout $n \ge 1$, on note

$$V_n = \left\{ x \in E; \sup_{k \geqslant 1} |L_k(x)| > n \right\}$$

et

$$\Omega = \bigcap_{n=1}^{+\infty} V_n.$$

- **2.a)** Pour tout $n \ge 1$, montrer que V_n est un ouvert de E.
- **2.b)** Montrer que Ω est dense dans E si et seulement si pour tout $n \ge 1$, V_n est dense dans E.
- **2.c)** Prouver que si Φ est une forme linéaire sur E qui reste bornée sur une boule de rayon $\rho > 0$ et de centre z quelconque alors Φ est continue et donner une majoration de sa norme.
- **2.d)** On suppose que Ω n'est pas dense dans E. Montrer alors qu'il existe un réel M tel que pour tout $k \ge 1$, $|||L_k||| \le M$. Que vaut Ω dans ce cas?

PARTIE II : Permutation des termes d'une série.

- 1) Soit σ une bijection de \mathbb{N}^* sur \mathbb{N}^* et $\sum v_n$ une série réelle absolument convergente. Montrer que la série $\sum v_{\sigma(n)}$ converge.
- 2) Soit $\sum w_n$ une série réelle convergente telle que $\sum |w_n|$ diverge.
 - **2.a)** Pour x réel on note $x^+ = \sup\{x, 0\}$ et $x^- = \sup\{-x, 0\}$. Exprimer x et |x| en fonction de x^+ et x^- .
 - **2.b)** Quelles sont les natures des séries $\sum w_n^+$ et $\sum w_n^-$?
 - **2.c)** Montrer que l'on peut construire une bijection σ de \mathbb{N}^* sur \mathbb{N}^* et deux applications strictement croissantes φ et ψ de \mathbb{N}^* dans \mathbb{N}^* telles que, pour tout $n \geqslant 1$,

$$\sum_{i=1}^{\varphi(n)} w_{\sigma(i)} \geqslant 1 \quad \text{et} \quad \sum_{i=1}^{\psi(n)} w_{\sigma(i)} \leqslant -1.$$

On proposera un algorithme permettant de proche en proche la détermination des valeurs de σ et la construction de φ et de ψ .

- **2.d)** Que peut-on en déduire sur la nature de la série $\sum w_{\sigma(n)}$?
- 3) Dans cette question $(F, \|\cdot\|_F)$ désigne un espace vectoriel normé sur \mathbb{R} de dimension finie et $(u_n)_{n\geqslant 1}$ une suite d'éléments de F. Montrer que $\sum u_{\sigma(n)}$ converge pour toute bijection σ de \mathbb{N}^* sur \mathbb{N}^* si et seulement si la série $\sum \|u_n\|_F$ converge.

4) On suppose dans cette question que F désigne l'espace l^2 des suites réelles $v = (v(k))_{k\geqslant 1}$ telles que $\sum v(k)^2$ converge, muni de la norme

$$||v||_2 = \left(\sum_{k=1}^{+\infty} v(k)^2\right)^{1/2}.$$

On pose, pour tous $n, k \in \mathbb{N}^*$,

$$\omega_n(k) = \begin{cases} 0 & \text{si} \quad n \neq k \\ \frac{1}{n} & \text{si} \quad k = n \end{cases}$$

- **4.a)** Montrer que, pour toute bijection σ de \mathbb{N}^* sur \mathbb{N}^* , la série $\sum \omega_{\sigma(n)}$ converge dans F.
- **4.b)** Quelle est la nature de la série $\sum \|\omega_n\|_2$? Ceci est-il en contradiction avec le résultat de la question 3)?

PARTIE III : Espaces et opérateurs.

On suppose dorénavant que E désigne l'espace vectoriel des suites réelles $u = (u_k)_{k \ge 1}$ telles que $\sum u_k$ converge.

1) Montrer que la formule

$$||u|| = \sup_{k \geqslant 1} \left| \sum_{i=1}^{k} u_i \right|$$

définit une norme sur E.

- 2) On désigne par C l'espace vectoriel des suites réelles $v=(v_k)_{k\geqslant 1}$ convergentes, muni de la norme $||v||_{\infty}=\sup_{k\geqslant 1}|v_k|$.
 - **2.a)** Montrer que C est complet.
 - **2.b)** Construire une application linéaire continue de $(E, \|\cdot\|)$ sur $(C, \|\cdot\|_{\infty})$ bijective et de réciproque continue.
 - **2.c)** L'espace vectoriel normé $(E, \|\cdot\|)$ est-il complet ?
- 3) Soit σ une bijection de \mathbb{N}^* sur \mathbb{N}^* et $N\in\mathbb{N}^*$. On définit une forme linéaire sur E en posant

$$L(u) = \sum_{i=1}^{N} u_{\sigma(i)}.$$

3.a) On suppose que $1 \in {\sigma(1), \sigma(2), \dots, \sigma(N)}$. On pose alors

$$\{\sigma(1), \sigma(2), \dots, \sigma(N)\} = \llbracket 1, k_1' \rrbracket \cup \llbracket k_2, k_2' \rrbracket \cup \dots \cup \llbracket k_p, k_p' \rrbracket$$

avec $p \in \mathbb{N}^*$ et $1 \leqslant k'_1 < k_2 - 1 < k_2 \leqslant k'_2 < \dots < k_p - 1 < k_p \leqslant k'_p$. Montrer que L est continue et calculer sa norme

$$|||L||| = \sup_{\|u\| \le 1} |L(u)|$$

en fonction de p.

3.b) Comment le résultat précédent est-il modifié lorsque $1 \notin \{\sigma(1), \sigma(2), \dots, \sigma(N)\}$? Dans la partie suivante on notera $p = p_N^{\sigma}$ pour rappeler que p dépend de σ et de N.

PARTIE IV : Synthèse.

Cette partie utilise les résultats et les notations des parties I et III. En particulier la notation E désigne l'espace défini dans la partie III.

On cherche une caractérisation des bijections σ de \mathbb{N}^* sur \mathbb{N}^* vérifiant la propriété

$$(\mathcal{P})$$
: $\forall (u_n)_{n\geqslant 1} \in E$, $(u_{\sigma(n)})_{n\geqslant 1} \in E$

1) En utilisant les formes linéaires

$$L_N: \begin{cases} E \to \mathbb{R} \\ u = (u_k)_{k \geqslant 1} \mapsto \sum_{i=1}^N u_{\sigma(i)} \end{cases}$$

donner une condition nécessaire portant sur la suite $(p_N^{\sigma})_{N\geqslant 1}$ (définie dans la partie III) pour que la bijection σ vérifie (\mathcal{P}) .

2) Cette condition est-elle suffisante?