Équations différentielles linéaires

-I - Équations différentielles linéaires du premier ordre

I est un intervalle réel d'intérieur non vide et a, b deux fonctions continues de I dans \mathbb{R} (ou dans \mathbb{C}). On s'intéresse à l'équation différentielle linéaire du premier ordre :

$$y' = ay + b. (1)$$

On associe à cette équation différentielle, l'équation homogène :

$$y' = ay. (2)$$

On se fixe un point x_0 de I et on désigne par A la primitive de a nulle en x_0 , soit pour tout $x \in I$:

$$A\left(x\right) = \int_{x_0}^{x} a\left(t\right) dt$$

La représentation graphique d'une solution de (1) est appelée courbe intégrale de l'équation différentielle.

- 1. Montrer, sans utiliser la fonction exponentielle ni le théorème de Cauchy-Lipschitz, qu'une solution définie sur \mathbb{R} et non identiquement nulle de l'équation différentielle y'=y ne s'annule jamais.
- 2. Montrer que l'ensemble des solutions sur l'intervalle I de l'équation différentielle (2) est non vide et qu'il est formé des fonctions y définies sur I par :

$$\forall x \in I, \ y(x) = \lambda e^{A(x)}$$

où λ une constante réelle (l'ensemble des solutions de (2) est un espace vectoriel de dimension 1 engendré par la solution particulière e^A).

On en déduit qu'une solution de (2) ne s'annule jamais sur I et garde un signe constant.

3. Montrer que l'ensemble des solutions sur l'intervalle I de l'équation différentielle (1) est non vide et qu'il est formé des fonctions y définies sur I par :

$$\forall x \in I, \ y(x) = e^{A(x)} \int_{x_0}^x b(t) e^{-A(t)} dt + \lambda e^{A(x)}$$

où λ une constante réelle.

- 4. Montrer que pour tout $x_0 \in I$ et $y_0 \in \mathbb{R}$, l'équation différentielle y' = ay + b admet une unique solution qui vérifie la condition initiale $y(x_0) = y_0$ (c'est un cas particulier du théorème de Cauchy-Lipschitz).
- 5. On se fixe un point $x_0 \in I$. Montrer que les tangentes aux courbes intégrales de (1) en x_0 sont parallèles ou concourantes.
- 6. Traiter le cas où la fonction a est constante et le second membre est de la forme $b(x) = P(x)e^{\alpha x}$, la fonction P étant polynomiale de degré $n \ge 0$ et α une constante réelle (ou complexe).
- 7. Traiter le cas où la fonction a est constante et le second membre b est de la forme $b(x) = P(x)e^{\alpha x} + Q(x)e^{\beta x}$, les fonctions P,Q étant polynomiales et α,β étant des constantes réelles (ou complexes) distinctes (ou b est une somme de $p \ge 2$ fonctions de la forme $P(x)e^{\alpha x}$).
- 8. Résoudre l'équation différentielle y' + 2y = b, où b est la fonction définie sur \mathbb{R} par :

$$b(x) = \begin{cases} 1 - |x| & \text{si } |x| \le 1\\ 0 & \text{si } |x| > 1 \end{cases}$$

9. On se donne deux scalaires a,b et on s'intéresse à l'équation différentielle linéaire homogène d'ordre 2 sur $\mathbb R$:

$$y'' = ay' + by. (3)$$

Résoudre cette équation différentielle en se ramenant à une équation différentielle d'ordre 1.

10. On s'intéresse à l'équation différentielle :

$$y'' + 2xy' + (x^2 - 1)y = 0$$

sur \mathbb{R} .

On désigne par φ l'endomorphisme de $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ défini par :

$$\forall y \in E, \ \varphi(y) = y' + xy \tag{4}$$

Déterminer les valeurs propres et vecteurs propres de φ et φ^2 , puis en déduire les solutions de (4).

11. Montrer que si f est une fonction de classe \mathcal{C}^1 sur [0,1] telle que :

$$\begin{cases} f(0) = 1 \\ \forall x \in [0, 1], f'(x) \le 2f(x) + 1 \end{cases}$$

on a alors:

$$\forall x \in [0,1], \ f(x) \le \frac{3}{2}e^{2x} - \frac{1}{2}.$$

12. On se fixe $x_0 \in I$, $y_0 \in \mathbb{R}$ et on suppose que f est une fonction de classe \mathcal{C}^1 sur I telle que :

$$\begin{cases} f(x_0) \le y_0 \\ \forall x \in [0, 1], f'(x) \le a(x) f(x) + b(x) \end{cases}$$

On dit que f est une barrière inférieure de l'équation différentielle (1) sur l'intervalle I. Montrer que :

$$\forall x \in I \cap [x_0, +\infty[, f(x) \le e^{A(x)} \int_{x_0}^x b(t) e^{-A(t)} dt + y_0 e^{A(x)}.$$

- 13. Soient f la solution sur \mathbb{R} de l'équation différentielle y' + 2xy = 1 vérifiant la condition initiale y(0) = 0 et \mathcal{D} l'ensemble des réels a strictement positifs tels que f'(a) = 0.
 - (a) Donner une expression intégrale de f.
 - (b) Montrer que:

$$\forall x \ge 0, \ 1 - e^{-x^2} \le 2xf(x).$$

(c) Montrer que:

$$\forall x \ge 2, \ \int_2^x \frac{e^{t^2}}{t^4} dt < \frac{e^{x^2}}{x^3}.$$

- (d) Montrer que f(x) est équivalent à $\frac{1}{2x}$ au voisinage de l'infini.
- (e) Montrer que \mathcal{D} n'est pas vide.
- (f) Montrer qu'en tout point de \mathcal{D} , la fonction f admet un maximum local strict.
- (g) Montrer que \mathcal{D} est réduit à un point et que la fonction f admet en ce point un maximum global strict.
- 14. On désigne par α un réel strictement positif et φ une fonction continue de \mathbb{R} dans \mathbb{R} .

(a) Donner la forme générale des solutions y de l'équation différentielle :

$$y' + \alpha y = \varphi \tag{5}$$

- (b) Montrer si $\lim_{x \to +\infty} \varphi(x) = \ell$, on a alors $\lim_{x \to +\infty} y(x) = \frac{\ell}{\alpha}$ pour toute solution y sur \mathbb{R} de (5).
- (c) Montrer que si f est une fonction continûment dérivable de $\mathbb R$ dans $\mathbb R$ telle que :

$$\lim_{x \to +\infty} \left(f'(x) + \alpha f(x) \right) = \ell$$

on a alors $\lim_{x \to +\infty} f(x) = \frac{\ell}{\alpha}$.

- (d) Montrer que si l'intégrale $\int_0^{+\infty} \varphi(t) dt$ est absolument convergente, il en est de même de $\int_0^{+\infty} y(t) dt$ pour toute solution y sur \mathbb{R} de (5) et exprimer $\int_0^{+\infty} y(t) dt$ en fonction de $\int_0^{+\infty} \varphi(t) dt$.
- 15. On désigne par α un réel strictement positif et φ une fonction continue de \mathbb{R} dans \mathbb{R} telle que $\int_{-\infty}^{+\infty} \varphi(t) dt$ soit absolument convergente
 - (a) Donner la forme générale des solutions y de l'équation différentielle :

$$y' - \alpha y = \varphi \tag{6}$$

- (b) Montrer (6) admet une unique solution f bornée sur \mathbb{R} .
- (c) Montrer que l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ est absolument convergente et exprimer $\int_{-\infty}^{+\infty} f(t) dt$ en fonction de $\int_{-\infty}^{+\infty} \varphi(t) dt$.
- 16. En étudiant l'équation différentielle :

$$x^2y' - y = 0. (7)$$

sur \mathbb{R} , montrer que le résultat de 4 n'est pas valable. Pourquoi?

17. Étudier les équations différentielles sur \mathbb{R} :

$$(a) xy' + y = x^n (8)$$

où n est un entier naturel non nul

(b) et
$$xy' - ny = x^{n+1}$$
 (9)

où n est un entier naturel supérieur ou égal à 2.

- 18. On suppose ici que les fonctions a et b sont périodiques sur \mathbb{R} de même période T > 0, la fonction b n'étant pas identiquement nulle.
 - (a) Montrer qu'une solution y de (1) est T-périodique si, et seulement si, y(0) = y(T).

- (b) Montrer que si l'équation homogène y'=ay a une solution non identiquement nulle qui est non T-périodique (ce qui équivaut à $\int_0^T a(t) \, dt \neq 0$) il existe alors une unique solution T-périodique de (1).
- (c) On suppose que l'équation homogène y'=ay a une solution T-périodique non identiquement nulle. Montrer que l'équation (1) a des solutions T-périodiques si, et seulement si, $\int_0^T b(t) \, e^{-A(t)} dt = 0, \text{ où } A \text{ est la primitive de } a \text{ nulle en } 0.$
- 19. On suppose ici que les fonctions a et b sont développables en série entière sur]-R,R[avec $0 < R \le +\infty$ et :

$$a(x) = \sum_{n=0}^{+\infty} a_n x^n, \ b(x) = \sum_{n=0}^{+\infty} b_n x^n$$

et on s'intéresse au problème de Cauchy:

$$\begin{cases} y' = ay + b \\ y(0) = y_0 \end{cases} \tag{10}$$

 $\operatorname{sur} I =]-R, R[.$

(a) En supposant qu'il existe une fonction f solution de (10) qui est développable en série entière sur]-R,R[avec :

$$f\left(x\right) = \sum_{n=0}^{+\infty} c_n x^n$$

montrer que les coefficients c_n sont uniquement déterminés.

(b) On désigne par $(c_n)_{n\in\mathbb{N}}$ la suite numérique définie par la relation de récurrence :

$$\begin{cases} c_0 = y_0 \\ \forall n \ge 0, \ (n+1) c_{n+1} = \sum_{k=0}^n a_k c_{n-k} + b_n \end{cases}$$

on se fixe un réel r dans]0,R[, on note :

$$A(r) = \sum_{n=0}^{+\infty} |a_n| r^n, \ B(r) = \sum_{n=0}^{+\infty} |b_n| r^n$$

on désigne par $n\left(r\right)$ un entier naturel tel que :

$$\forall n \ge n(r), \frac{r(A(r) + B(r))}{n+1} \le 1$$

et on note:

$$M(r) = \max\left(\max_{0 \le k \le n(r)} |c_k| r^k, 1\right)$$

i. Montrer que :

$$\forall n \ge 0, |c_n| \le \frac{M(r)}{r^n}$$

ii. En déduire que le rayon de convergence de la série $\sum c_n x^n$ est au moins égal à R, puis que la fonction f définie par $f(x) = \sum_{n=0}^{+\infty} c_n x^n$ sur l'intervalle]-R, R[est l'unique solution de (10).

Pour les équations différentielles d'ordre 1 non linéaires, on a le résultat suivant.

Si U une partie ouverte de $\mathbb{R} \times \mathbb{R}^m$ et f une application de U dans \mathbb{R}^m , on dit alors qu'une fonction $u: I \to \mathbb{R}^m$ est une solution de l'équation différentielle :

$$x' = f(t, x) \tag{11}$$

si:

- -I est un intervalle non trivial (ni vide, ni réduit à un point) de la droite réelle \mathbb{R} ;
- u est une application dérivable de I dans \mathbb{R}^m ;
- pour tout $t \in I$, on a $(t, u(t)) \in U$ et u'(t) = f(t, u(t)).

Si $u_1: I_1 \to \mathbb{R}^m$ et $u_2: I_2 \to \mathbb{R}^m$ sont deux solutions de (11), on dit alors que u_1 est une restriction de u_2 si $I_1 \subset I_2$ et si, pour tout $t \in I_1$, on a $u_1(t) = u_2(t)$. On dit aussi que u_2 est un prolongement de u_1 , ou encore que u_2 prolonge u_1 .

Une solution de (11) est dite maximale si elle n'admet pas d'autre prolongement qu'elle même.

On dit que l'application f est localement lipschitzienne en x si, pour tout point (t_0, x_0) de U, il existe deux nombres réels $\varepsilon > 0$ et k > 0 tels que :

- l'ensemble $C = [t_0 \varepsilon, t_0 + \varepsilon] \times \mathcal{B}_f(x_0, \varepsilon)$ est inclus dans U;
- si (t, x_1) et (t, x_2) sont deux points de C, on a :

$$||f(t,x_1) - f(t,x_2)|| \le k ||x_1 - x_2||.$$

Par exemple, une fonction $f \in \mathcal{C}^n(U,\mathbb{R}^m)$ est localement lipschitzienne en x.

Théorème 1 (Cauchy-Lipschitz) Soient U une partie ouverte de $\mathbb{R} \times \mathbb{R}^m$, $f \in C^0(U, \mathbb{R}^m)$ une fonction localement lipschitzienne en x, (t_0, x_0) un point de U; alors:

- l'équation différentielle (E) admet une solution maximale unique $u: I \to \mathbb{R}^m$ satisfaisant à $u(t_0) = x_0$;
- son ensemble de départ I est un intervalle ouvert de \mathbb{R} ;
- toute solution v de (E) telle que $v(t_0) = x_0$ est une restriction de u.

- II - Équations différentielles linéaires d'ordre n à coefficients constants

On s'intéresse tout d'abord aux équations différentielles linéaires, homogènes (ou sans second membre), d'ordre $n \geq 1$ à coefficients constants sur $I = \mathbb{R}$:

$$y^{(n)} = a_{n-1}y^{(n-1)} + \dots + a_0y \tag{12}$$

où les a_k sont des scalaires donnés.

On note D l'opérateur de dérivation qui associe à toute fonction $y \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ sa dérivée. Cet opérateur est un endomorphisme de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ et on peut définir ses itérés D^k par $D^0 = I_d$ et $D^{k+1} = D^k \circ D$ pour tout $k \in \mathbb{N}$ (pour tout $y \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$, on a $D^k(y) = y^{(k)}$). À tout polynôme $Q(X) = \sum_{k=0}^q q_k X^k$ dans $\mathbb{C}[X]$ on peut associer l'opérateur différentiel $Q(D) = \sum_{k=0}^q q_k D^k$ et il est facile de vérifier que si P, Q sont deux polynômes alors $P(D) \circ Q(D) = Q(D) \circ P(D) = (PQ)(D)$.

Le polynôme :

$$P(X) = X^{n} - \sum_{k=0}^{n-1} a_{k} X^{k}$$

est le polynôme caractéristique de (12) et l'ensemble S des solutions de cette équation différentielle est $\ker(P(D))$. C'est donc un espace vectoriel.

En notant $\lambda_1, \dots, \lambda_p$ les racines complexes deux à deux distinctes de multiplicités respectives m_1, \dots, m_p de P, on a $P(X) = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ et $P(D) = \prod_{k=1}^p (D - \lambda_k I_d)^{m_k}$.

1. Avec les notations qui précèdent, montrer que :

$$S = \ker (P(D)) = \bigoplus_{k=1}^{p} \ker ((D - \lambda_k I_d)^{m_k}).$$

2. Soient λ un nombre complexe et m un entier naturel non nul. Montrer que les solutions sur \mathbb{R} de l'équation différentielle :

$$\left(D - \lambda I_d\right)^m(y) = 0$$

forment un espace vectoriel de dimension m engendré par les fonctions :

$$y_k: x \mapsto x^k e^{\lambda x} \quad (0 \le k \le m-1).$$

3. En déduire que les solutions définies sur $\mathbb R$ et à valeurs complexes de l'équation différentielle (12) sont de la forme

$$x \mapsto y(x) = \sum_{k=1}^{p} e^{\lambda_k x} P_k(x),$$

où, pour tout k compris entre 1 et p, P_k est une fonction polynomiale à coefficients complexes de degré inférieur ou égal à $m_k - 1$, ce qui revient à dire que l'ensemble S des solutions de cette équation est un \mathbb{C} -espace vectoriel de dimension n engendré par les fonctions :

$$x \mapsto x^j e^{\lambda_k x} \quad (1 \le k \le p, \ 0 \le j \le m_k - 1)$$

4. On suppose ici que les coefficients a_k sont réels et on note $\alpha_1, \dots, \alpha_r$ les racines réelles distinctes de P (s'il en existe) et $\alpha_{r+1} \pm i\beta_{r+1}, \dots, \alpha_s \pm i\beta_s$ les racines complexes non réelles (s'il en existe) de P, les β_i étant tous non nuls.

Montrer que les solutions définies sur \mathbb{R} et à valeurs réelles de l'équation différentielle (12) sont de la forme

$$y(x) = \sum_{k=1}^{r} e^{\alpha_k x} P_k(x) + \sum_{k=r+1}^{s} e^{\beta_k x} \cos(\gamma_k x) P_k(x) + \sum_{k=r+1}^{s} e^{\beta_k x} \sin(\gamma_k x) Q_k(x),$$

où, pour tout k compris entre 1 et r, P_k est une fonction polynomiale à coefficients réels de degré inférieur ou égal à $m_k - 1$ et pour tout k compris entre r + 1 et s, P_k et Q_k sont des fonctions polynomiales à coefficients réels de degré inférieur ou égal à $m_k - 1$, ce qui revient à dire que l'ensemble S des solutions réelles de cette équation est un \mathbb{R} -espace vectoriel de dimension n engendré par les fonctions :

$$\begin{cases} x^{j}e^{\alpha_{k}x}, & (1 \le k \le r, \ 0 \le j \le m_{k} - 1) \\ x^{j}e^{\beta_{k}x}\cos(\gamma_{k}x), & x^{j}e^{\beta_{k}x}\sin(\gamma_{k}x), & (r+1 \le k \le s, \ 0 \le j \le m_{k} - 1) \end{cases}$$