concours interne

de recrutement de professeurs agrégés et concours d'accès à l'échelle de rémunération

première épreuve de mathématiques

Durée : 6 heures

On se propose d'établir quelques résultats sur l'ensemble des sommes de n carrés dans un corps ou dans certains anneaux.

Un sous-ensemble S d'un anneau A est dit multiplicatif si le produit de deux éléments de S appartient à S.

Pour tout entier $n \ge 1$, on note $S_n(A)$ l'ensemble des éléments x de l'anneau A qui peuvent s'écrire sous la forme $x = x_1^2 + \ldots + x_n^2$, avec x_1, \ldots, x_n dans A.

Si k est un corps commutatif, k[X] et k(X) désignent respectivement l'anneau des polynômes et le corps des fractions rationnelles à coefficients dans k en une indéterminée X; enfin $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ ont les significations habituelles.

I

Où l'on traite quelques exemples.

- 1. Soient x, y, z, t quatre éléments d'un sous-anneau B du corps \mathbb{R} des réels. En écrivant que
 - $|x + iy|^2 \cdot |z + it|^2 = |(x + iy)(z + it)|^2$

démontrer que S₂ (B) est un ensemble multiplicatif.

- 2. L'égalité (*) peut être regardée comme une identité dans l'anneau B en les lettres x, y, z, t. Énoncer cette identité et la démontrer dans un anneau commutatif quelconque A. En déduire que S₂ (A) est un ensemble multiplicatif.
- 3. Montrer que 15 ∉ S₃ (Z) et en déduire que S₃ (Z) n'est pas un ensemble multiplicatif.
- 4. On note $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$, $\overline{7}$ les huit éléments de l'anneau $E = \mathbb{Z}/8\mathbb{Z}$. Donner, sans justification, la liste des éléments de chacun des trois ensembles S_1 (E), S_2 (E), S_3 (E).
- 5. Soient a, b, c, d dans \mathbb{Z} tels que $a^2 + b^2 + c^2 + d^2 \equiv 0 \pmod{8}$.

Démontrer que ces quatre nombres sont tous pairs.

6. En déduire que, si $n \in \mathbb{Z}$ est congru à -1 modulo 8, alors n n'appartient ni à $S_3(\mathbb{Z})$ ni à $S_3(\mathbb{Q})$.

- 7. L'ensemble $S_3(\mathbb{Q})$ est-il multiplicatif?
- 8. Démontrer qu'un polynôme $f \in \mathbb{R}[X]$ appartient à $S_2(\mathbb{R}[X])$ si et seulement si $f(x) \ge 0$ pour tout x dans \mathbb{R} . [On pourra examiner d'abord le cas des polynômes de degré 2.]
- 9. Démontrer que pour tout $n \ge 3$, on a $S_n(\mathbb{R}[X]) = S_2(\mathbb{R}[X])$. A-t-on aussi $S_n(\mathbb{R}(X)) = S_2(\mathbb{R}(X))$?

П

Où l'on étudie les produits de sommes de n carrés dans un corps.

Cette partie peut être traitée indépendamment de la précédente.

Dans cette partie, k désigne un corps commutatif de caractéristique zéro et l_n est l'unité de l'anneau $\mathcal{M}_n(k)$ des matrices carrées d'ordre n à coefficients dans k.

Si M est une matrice, carrée ou rectangulaire, on note tM sa transposée et $\Delta(M)$ la somme des carrés des éléments de la première ligne de M.

Une matrice $A \in \mathcal{M}_n(k)$ est dite semi-orthogonale si l'on a :

$$A \cdot {}^{t}A = {}^{t}A \cdot A = \Delta (A) I_{n}$$

- 1. Soient $A \in \mathcal{M}_n(k)$ et $a \in k$ tels que $A \cdot {}^{t}A = a I_n$.
 - a. Prouver que $a = \Delta(A)$.
 - b. Montrer que, si $a \neq 0$, alors A est semi-orthogonale.
- 2. Soient A et B semi-orthogonales dans $\mathcal{M}_n(k)$ et $e \in k$. Démontrer que les matrices eA, ¹A et AB sont semi-orthogonales et calculer Δ (eA), Δ (¹A) et Δ (AB) en fonction de e, Δ (A) et Δ (B).
- 3. On pose

$$\Omega_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 et, pour $n \ge 3$, $\Omega_n = \begin{pmatrix} \Omega_2 & 0 \\ 0 & I_{n-2} \end{pmatrix}$.

Démontrer que Ω_n est semi-orthogonale pour tout $n \ge 2$.

- 4. Soit $n \ge 2$ et A semi-orthogonale dans $\mathcal{M}_n(k)$.
 - a. Montrer que la matrice obtenue à partir de A en échangeant les deux premières lignes est encore semiorthogonale.
 - b. Établir, plus généralement, qu'une permutation quelconque des lignes ou des colonnes n'affecte pas la semi-orthogonalité d'une matrice.
- 5. Soit L = (ℓ_1, \ldots, ℓ_n) une matrice-ligne à coefficients dans k telle que $\Delta(L) = 0$.
 - a. Montrer que la matrice $^{t}L \cdot L$ est semi-orthogonale et déterminer sa i-ème ligne pour $1 \le i \le n$.
 - b. En déduire qu'on peut trouver dans $\mathcal{M}_n(k)$ une matrice semi-orthogonale dont L soit la première ligne.
- 6. Soient A et B semi-orthogonales dans $\mathcal{M}_n(k)$. On suppose que $\Delta(A) \neq 0$ et que $\Delta(A) + \Delta(B) \neq 0$. On pose $C = -(\Delta(A))^{-1} A^{\dagger} B A$.

Démontrer que la matrice $\begin{pmatrix} A & B \\ C & {}^{t}A \end{pmatrix} \in \mathscr{M}_{2n}(k)$ est semi-orthogonale.

1ère composition 3/4

- 7. Soient x_1, \ldots, x_n dans k. Montrer qu'il existe dans $\mathcal{M}_n(k)$ une matrice semi-orthogonale dont la première ligne est (x_1, \ldots, x_n) , dans chacun des deux cas suivants :
 - $a. k = \mathbb{R}$.
 - b. k quelconque et n puissance de 2 (c'est-à-dire de la forme $n = 2^p$, $p \in \mathbb{N}$).
- 8. Prouver que, si *n* est une puissance de 2, un élément *a* de *k* appartient à l'ensemble $S_n(k)$ défini dans l'introduction si et seulement s'il existe une matrice semi-orthogonale A dans $\mathcal{M}_n(k)$ vérifiant $\Delta(A) = a$.
- 9. Montrer que, si n est une puissance de 2, alors $S_n(k)$ est un ensemble multiplicatif.

m

Où l'on précise le nombre de carrés nécessaires pour écrire - 1.

Dans cette partie, k désigne un corps commutatif de caractéristique quelconque. Le **niveau** s(k) de k est le plus petit entier $n \ge 1$ tel que $-1 \in S_n(k)$, si un tel entier n existe; dans le cas contraire, on pose $s(k) = +\infty$.

- 1. Calculer le niveau des corps R et C.
- 2. Quel est le niveau d'un corps de caractéristique 2 ? d'un corps de caractéristique 5 ?
- 3. On pose $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, où p est un nombre premier ≥ 3 .
 - a. Quel est le noyau du morphisme $x \mapsto x^2$ du groupe multiplicatif \mathbb{F}_p^* des éléments non nuls du corps \mathbb{F}_p dans lui-même?
 - b. Quel est le cardinal de l'image E de ce morphisme?
 - c. T désignant l'ensemble des éléments de \mathbb{F}_p de la forme -1-y avec $y \in S_1$ (\mathbb{F}_p) = E \cup {0}, démontrer que l'intersection T \cap S_1 (\mathbb{F}_p) n'est pas vide.
 - d. En déduire que $s(\mathbb{F}_p) \leq 2$.
- 4. Démontrer que, si le corps k (fini ou infini) est de caractéristique non nulle, alors $s(k) \le 2$.
- 5. On suppose, dans cette question, que le corps k est de caractéristique zéro et de niveau $s \neq +\infty$. Il existe donc x_1, \ldots, x_s dans k tels que $-1 = x_1^2 + \ldots + x_s^2$. Soit n la plus grande puissance de 2 telle que $n \leq s$ et soit $x = x_1^2 + \ldots + x_n^2$. Établir que $x \neq 0$, puis successivement que -x, $-x^2$ et -1 appartiennent à $S_n(k)$.
- 6. Démontrer que le niveau d'un corps commutatif quelconque est égal ou bien à +∞ ou bien à une puissance de 2.

IV

Où l'on traite le cas d'un anneau de polynômes.

Dans cette partie, on se donne un corps commutatif k de caractéristique zéro et l'on pose A = k[X] et K = k(X) en sorte que $k \subseteq A \subseteq K$.

- 1. Démontrer que $S_1(A) = A \cap S_1(K)$.
- 2. Soient $a_1, ..., a_{n-1}, b$ dans $K(n \ge 2)$. Simplifier l'expression $(b+1)^2 + \sum_{i=1}^{n-1} (a_i(b-1))^2$ lorsque $\sum_{i=1}^{n-1} a_i^2 = -1$.
- 3. En déduire que, s'il existe $n \ge 2$ tel que $-1 \in S_{n-1}(k)$, alors $S_n(k) = k$, $S_n(A) = A$ et $S_n(K) = K$.
- 4. Pour quels entiers $n \ge 1$ les ensembles $S_n(\mathbb{C}(X))$ sont-ils multiplicatifs ?
- 5. Soit *n* un entier ≥ 2 tel que $-1 \notin S_{n-1}(k)$ et soient R_1, \ldots, R_n des polynômes dans A. Démontrer que si $R_1^2 + \ldots + R_n^2 = aX$, avec $a \in k$, alors R_1, \ldots, R_n sont nuls.
- 6. Soient P, Q, $P_1, ..., P_n, Q_1, ..., Q_n$ dans $A(n \ge 2)$. On pose $S = P - \sum_{i=1}^{n} Q_i^2$, $T = PQ - \sum_{i=1}^{n} P_i Q_i$, Q' = 2T - QS et $P'_i = 2 Q_i T - P_i S$ pour $1 \le i \le n$.
 - a. Démontrer que, si l'on a l'égalité:

(1)
$$Q^2 P = \sum_{i=1}^{n} P_i^2,$$

alors on a aussi les deux égalités :

(2)
$$Q'^2 P = \sum_{i=1}^n P_i'^2$$
 et

(3)
$$QQ' = \sum_{i=1}^{n} (P_i - QQ_i)^2$$
.

b. On suppose, outre l'égalité (1), que $-1 \notin S_{n-1}(k)$, que $Q \neq 0$ et que Q' = 0. Prouver l'égalité:

$$P = \sum_{i=1}^{n} Q_i^2.$$

7. Soit $n \ge 2$ tel que $-1 \notin S_{n-1}(k)$ et soient P, Q, P_1, \ldots, P_n dans A vérifiant l'égalité (1) ci-dessus et les conditions :

(5)
$$PQ \neq 0$$
 et $deg Q \geq 1$.

Démontrer qu'on peut trouver Q'', P_1'' , ..., P_n'' dans A vérifiant:

(6)
$$Q''^2 P = \sum_{i=1}^n P_i''^2$$

et

(7)
$$PQ'' \neq 0 \quad \text{et} \quad \deg Q'' < \deg Q.$$

[On pourra utiliser la question précédente en prenant pour Q_i le quotient dans la division euclidienne de P_i par Q_i .]

- 8. Démontrer que, pour tout $n \ge 1$, on a $S_n(A) = A \cap S_n(K)$.
- 9.a. Démontrer que les corps k et K ont même niveau.
 - b. Supposant que ce niveau commun s est fini, démontrer que $S_s(K) \neq S_{s+1}(K)$.
- 10. Établir que, si n est une puissance de 2, alors l'ensemble $S_n(A)$ est multiplicatif.