MATHÉMATIQUES I

Objectifs

On se propose, dans ce qui suit, de déterminer l'ensemble des solutions d'une équation différentielle linéaire à coefficients constants lorsqu'elle est homogène, puis lorsque celle-ci admet un « second membre » d'un type particulier.

La partie I vise à établir des résultats utiles dans les suivantes.

Notations

- Pour tout couple $(m, n) \in \mathbb{IN}^2$:
 - * si $m \le n$ l'ensemble $\{k \in \mathbb{N}, m \le k \le n\}$ est noté [[m, n]];
 - * $\delta_{m,n}$ vaut 1 si m = n, 0 sinon.
- Si $(p,q) \in {\rm I\!N}^2$, on note ${\mathbb C}_q[X]$ l'ensemble constitué des éléments de ${\mathbb C}[X]$ de degré inférieur ou égal à q et ${\mathbb C}_{q,\,p}[X]$ celui constitué des éléments de ${\mathbb C}_q[X]$ divisibles par X^p .
- Si u est une application linéaire, Ker(u) et Im(u) désignent respectivement son noyau et son image.
- Si u est un endomorphisme, par convention, u^0 est l'application identité, et pour tout entier naturel p, on pose $u^{p+1} = u \circ u^p$.
- On considère un intervalle I de \mathbbm{R} contenant au moins deux éléments. On dira que l'intervalle I est un voisinage de 0 s'il existe un réel $\alpha > 0$ tel que $[-\alpha,\alpha] \subset I$. On note E le \mathbbm{C} espace vectoriel des applications de classe C^∞ de I dans \mathbbm{C} , 0_E son élément nul, id_E l'application identité de E et D l'endomorphisme « dérivation » de E, c'est-à-dire tel que : $\forall f \in E, D(f) = f'$.
- Pour tout y de E, et pour tout k entier strictement positif, $y^{(k)}$ désigne la dérivée $k^{\text{ième}}$ de y. Par convention $y^{(0)} = y$.
- Si $P \in \mathbb{C}[X]$ et $z \in \mathbb{C}$, on note deg(P) le degré de P et $P_{\langle z \rangle}$ l'application de I dans \mathbb{C} définie par : $\forall t \in I, \ P_{\langle z \rangle}(t) = P(t)e^{zt}$.

Filière PC

Partie I -

Soient $z \in \mathbb{C}$ et $(p,q) \in \mathbb{N}^2$ tel que $p \le q$.

I.A - Montrer que $\mathbb{C}_{q,\;p}[X]$ est un \mathbb{C} - espace vectoriel de dimension finie et préciser sa dimension.

I.B - Montrer qu'on peut définir une application φ_z de $\mathbb{C}[X]$ dans E définie par : $\forall P \in \mathbb{C}[X], \quad \varphi_z(P) = P_{\langle z \rangle}$.

Montrer que φ_z est linéaire et injective.

I.C - Déduire des questions précédentes que les images par φ_z de $\mathbb{C}_q[X]$ et $\mathbb{C}_{q,\,p}[X]$ sont des sous-espaces vectoriels de E de dimensions finies que l'on précisera.

Dans la suite de ce problème, n est un entier naturel non nul, $\alpha = (\alpha_0, ... \alpha_n)$ un élément de \mathbb{C}^{n+1} tel que α_n n'est pas nul, et on note (H) l'équation différentielle, d'inconnue γ élément de E:

$$(H) \qquad \sum_{k=0}^n \alpha_k y^{(k)} = 0_E.$$

Partie II -

On se propose, dans cette partie, de déterminer S_H , l'ensemble des solutions de (H) définies sur I. On admettra que $\dim(S_H)=n$.

II.A - Justifier que
$$S_H = Ker \left(\sum_{k=0}^n \alpha_k D^k \right)$$
.

On note p le nombre de racines distinctes du polynôme $A = \sum_{k=0}^n \alpha_k X^k$ de $\mathbb{C}[X]$; on note $r_1, r_2 ... r_p$ ses racines et $m_1, m_2 ... m_p$ leurs ordres de multiplicité respectifs.

 $\mathbf{II.B}$ - Vérifier que S_H contient le sous-espace vectoriel de E :

$$\sum_{j=1}^{p} Ker((D-r_{j} \cdot id_{E})^{m_{j}}).$$

- **II.C** Dans cette question, $r \in \mathbb{C}$ et $m \in \mathbb{N}^*$.
- a) Soit P un élément non nul de $\mathbb{C}[X]$. Justifier l'existence d'un élément Q de $\mathbb{C}[X]$ tel que $d^\circ Q < d^\circ P$ et $(D-r\cdot id_E)(P_{\langle r\rangle}) = Q_{\langle r\rangle}$.
- b) En déduire par récurrence la propriété suivante pour tout entier k de $\lceil \lceil 1, m \rceil \rceil$:

si
$$P\!\in\mathbb{C}_{k-1}\![X]$$
 , alors $P_{\langle r\rangle}\!\in\!\mathit{Ker}((D-r\cdot id_E)^k)$.

- c) En conclure que $Ker((D-r\cdot id_E)^m)$ est un sous-espace vectoriel de E de dimension au moins m .
- **II.D** Déduire de ce qui précède que, pour tout élément y de E, on a l'équivalence suivante, $y \in S_H$ si et seulement si il existe une famille $(P_j)_{j \in [[1, \, p]]}$ d'éléments de $\mathbb{C}[X]$ telle que :

$$\forall j \in [[1, p]], \quad deg(P_j) < m_j \text{ et } \forall t \in I, \quad y(t) = \sum_{j=1}^p P_j(t)e^{r_jt}.$$

II.E - Dans le cas où I est un voisinage de 0, prouver que pour tout réel α strictement positif tel que $]-\alpha,\alpha[\subset I$, les solutions de (H) sont développables en série entière sur $]-\alpha,\alpha[$.

Partie III -

Dans cette partie, on considère un polynôme B de $\mathbb{C}[X]$, non nul. On note d le degré du polynôme B. On choisit un nombre complexe z et on note m l'ordre de multiplicité (éventuellement nul) de z en tant que racine du polynôme $A = \sum_{k=0}^{n} \alpha_k X^k$ de $\mathbb{C}[X]$.

On se propose de résoudre l'équation différentielle, d'inconnue y élément de E , notée (L) :

$$(L) \qquad \sum_{k=0}^{n} \alpha_k y^{(k)} = B_{\langle z \rangle}.$$

III.A - Vérifier qu'on peut définir une application ψ , de $\mathbb{C}_{m+d,m}[X]$ dans E, définie par

$$\forall P \in \mathbb{C}_{m+d, m}[X], \quad \psi(P) = \left[\sum_{k=0}^{n} \alpha_k D^k\right] (P_{\langle z \rangle})$$

puis montrer que celle-ci est linéaire.

III.B - Prouver que ψ est injective et que $Im(\psi) \subset \varphi_z(\mathbb{C}_d[X])$.

III.C - Démontrer qu'il existe un unique élément Π de $\mathbb{C}_{m+d,m}[X]$ tel que $\Pi_{\langle z \rangle}$ soit solution de (L), définie sur I, puis préciser, en fonction de Π , l'ensemble des solutions de (L) sur I.

III.D - Dans le cas où l'intervalle I est un voisinage de 0, les solutions de (L) sont-elles développables en série entière sur tout intervalle $]-\alpha, \alpha[(\alpha > 0)$ tel que $]-\alpha, \alpha[\subset I$?

Partie IV -

On suppose, dans cette dernière partie, que α_0 vaut 1 et que :

$$M = \max_{k \in [[0, n]]} |\alpha_k| \qquad .$$

On considère également un élément b de E et on note (L_b) l'équation différentielle, d'inconnue y élément de E :

$$(L_b) \qquad \sum_{k=0}^n \alpha_k y^{(k)} = b.$$

IV.A - Soit $\alpha \in \mathbb{R}^{+*}$ tel que $]-\alpha, \alpha[\subset I$ et que (L_b) admette une solution développable en série entière sur l'intervalle $]-\alpha, \alpha[$.

Montrer que b est également développable en série entière sur l'intervalle $]-\alpha,\alpha[$. Qu'en est-il alors des autres solutions de (L_b) ?

IV.B - Montrer que, si $p \in \mathbb{IN}$, alors il existe un unique élément Π_p de $\mathbb{C}_p[X]$ tel que :

$$\sum_{k=0}^{n} \alpha_k \Pi_p^{(k)} = \frac{X^p}{p!}.$$

Prouver qu'il existe un unique élément $(\pi_{p,\,j})_{j\,\in\,[[0,\,p]]}$ de $\mathbb{C}^{p\,+\,1}$ tel que :

$$\Pi_p = \sum_{j=0}^p \left(\pi_{p,j} \cdot \frac{X^j}{j!} \right).$$

IV.C - Prouver que :

$$\forall (p,q) \in \mathbb{IN}^2 \ q \le p \Rightarrow \sum_{k=0}^{\min\{n, p-q\}} (\alpha_k \cdot \pi_{p,q+k}) = \delta_{p,q}$$

IV.D - Lorsque p est un entier strictement positif, traduire sous forme matricielle le système linéaire précédent d'inconnue $(\pi_{p,j})_{j\in[[0,p]]}$, élément de \mathbb{C}^{p+1} , puis écrire une procédure qui, en fonction de n et du système α , détermine l'unique solution de celui-ci.

IVE -

- a) Vérifier que : $\forall p \in \mathbb{N}, \forall j \in [[0, p]], |\pi_{p, p-j}| \leq (2M)^j$.
- b) En déduire que, pour tout $t \in \mathbb{R}$ et pour tout entier q, alors :

$$\left|\Pi_{a}(t)\right| \leq \left(2M + |t|\right)^{q}.$$

On suppose dorénavant que b est une application de I dans $\mathbb C$ développable en série entière sur un intervalle $]-\alpha,\alpha[\ (\alpha>0)$ inclus dans I. On note r le rayon de convergence de la série entière $\sum b^{(n)}(0)\ z^n$ et on suppose que r>2M.

IV.F -

a) Montrer qu'il existe β élément de]0, α [tel que la suite de fonctions $(f_p)_{p \in \mathbb{N}}$ définie par :

$$\forall p \in \mathbb{N} \ \forall t \in I, f_p(t) = \sum_{q=0}^{p} b^{(q)}(0) \Pi_q(t)$$

converge sur]- β , β [.

On note f la limite de cette suite de fonctions, définie sur $]-\beta$, $\beta[$.

b) Prouver que f est de classe C^n sur $]-\beta, \beta[$.

IV.G - Justifier que f est une solution de (L_b) définie sur l'intervalle sur]- β , β [.

IV.H - Prouver que f est de classe C^{∞} sur $]-\beta,\,\beta[$ et que pour tout entier k>0, on a :

$$\forall t \in]-\beta, \beta[, f^{(k)}(t) = \lim_{p \to +\infty} f_p^{(k)}(t).$$

IV.I - Si $t \in \mathbb{R}^+$, on note E(t) sa partie entière.

On se propose, dans cette question, de démontrer que f est développable en série entière sur $]-\beta,\,\beta[$. À cet effet, on introduit un élément x de $]-\beta,\,\beta[$ puis, pour tout entier p de ${\rm I\! N}$, l'application e_p de ${\rm I\! R}^+$ dans ${\mathbb C}$ définie par :

$$\forall p \in \mathrm{I\!N}, \forall t \in \mathrm{I\!R}^+, \ e_p(t) = \frac{f_p^{(E(t))}(0) \cdot x^{E(t)}}{\lceil E(t) \rceil!} \,.$$

- a) Montrer que, si $p\in {\rm I\!N}$, e_p est intégrable sur ${\rm I\!R}^+$ et préciser la valeur de son intégrale sur ${\rm I\!R}^+$.
- b) Exhiber une application e en escalier de ${\rm I\!R}^+$ dans ${\rm I\!R}$ intégrable telle que :

$$\forall p \in \mathbb{IN}, \quad \forall t \in \mathbb{IR}^+, \quad |e_p(t)| \le e(t).$$

c) Conclure.

IV.J -

- a) Qu'en déduit-on pour les solutions de (L_b) sur l'intervalle $]-\beta,\beta[$?
- b) Les résultats précédents sont-ils encore valables si α_0 n'est pas égal à 1 ?

